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The effects of spatial coherence on intensity 
fluctuation distributions of Gaussian light 

Abstract. The effects of finite sizes of source and detector on observed intensity 
fluctuations of Gaussian light are investigated both theoretically and experi- 
mentally. The theory allows a measurement of source size to be made using a 
single receiving aperture, rather than two as used in the Hanbury-Brown Twiss 
intensity interferometer. 

I n  much recent work in statistical optics, temporal coherence properties have been 
investigated. Theoretical and experimental results have been obtained in which the 
effects of spatial coherence have been considered to be negligibly small due to the use 
of essentially point sources and detectors. A recent bibliography is given by Jakeman 
and Pike (1969). In  real experiments, of course, the order of size of a ‘point’ source or 
detector before spatial coherence effects become measurable is of interest. Conversely, 
effects due to loss of spatial correlation can be used, as in the Michelson stellar 
interferometer, or the Hanbury-Brown Twiss intensity interferometer, to provide 
information about the source. 

In  recently reported quantitative work from this laboratory using intensity 
fluctuation spectroscopy of laser scattering to determine diffusion constants of protein 
molecules (Foord et al. 1970) it was necessary to calculate the effects of finite 
aperture sizes on the measurements in order to interpret fully the results obtained. 
This calculation together with supporting experimental data are presented in this 
paper. The  results are applicable to the general problem of spatial integration over a 
detector surface of light from a quasimonochromatic Gaussian source. We prove this 
first below by showing that the mutual coherence of the scattered laser field between 
two points on the detector surface is identical to that arising from such a source. We 
then calculate the second moment of the intensity fluctuation distribution measured by 
a single detector, whose area is not small compared with a ‘coherence area’. The  
result, which involves simply a double integral of the square of the Van Cittert- 
Zernicke mutual coherence function over the detector surface, can be thought of as 
providing the theory of a single-aperture intensity interferometer. 

Consider the electric field at the point r due to the scattering of laser light of 
wave vector k, from particles situated at the point r j  and moving with velocity nj. 
Let a fraction n,6w of the particles give rise to frequency shifts at r between w and 
w + 6w. The formula 

0 = wg -K , (w)  . vi (1) 
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defines the frequency shift in terms of the scattering vector Kj(  w )  for these particles. 
The  positive-frequency part of the scattered field may be written, by a simple calcula- 
tion of phases, as 

where 

cc,+(r) = go+ exp(iko. r )  2 exp{iKj(w). ( r - r j ) }  (3 1 
j 

and represents the amplitude at the point r of the Fourier component of the field with 
frequency w .  The same constant bo + is associated with each particle and we consider 
one polarized component. The  ensemble or long-time average 

( ~ , + ( r ) c c ~ , - ( r ) )  oc 2 (exp{-iK,(w) . ( r - r J + i K j ( w ‘ )  . ( r - r j ) } )  (4) 

vanishes unless w = U’, since otherwise i a n d j  refer to particles in different sets and 
the phase differences are then large and random. When this equality is satisfied the 
exponent may be approximated in the far-field limit for a cylindrically symmetric 
system r 

i j  

(Y, $, 0) ,  rz = (s t ,  q5i x i ) ,  where ko  is at an angle x to the axis, by 

+(xi-xj)s inx+ikg(~is in~,-szsin~i-rs in$+r’  sin$‘) cosx. ( 5 )  

The  random phase implicit in the last two terms of this expression means that contribu- 
tions to (4) come only from the terms i = j. Using the density n, of particles giving 
rise to the frequency shift w to convert the diagonal sum to an integral over the 
scattering volume leads to 

(a,+(r)a,,-(r’) ) CC nw8,,~ 1 s ds dq5 dx exp - [s{r COS(+-$) -Y’ cos(q5-$‘)) 
2) [ i:o 

- $ ( Y ~ - Y ’ ~ ) ]  exp{ik,(r’sin$’-r sin$)) ( 6 )  1 
so that the normalized first-order autocorrelation function of the field, 

( € + ( r ,  t>&-(r ,  t ’ ) > / < p + ( r ,  t )12)  

(mutual coherence function), is given from (2)  and the Bessel integral (6)  by 

2 J 1 [ ~ ( ~ 2 + ~ ’ 2 -  2rr’  COS($-$'))^'^] 
g(I)(Y, t ;  Y’, t’) = exp -- 

K { Y 2  - 2 Y Y ’  cos($ - $’))1’2 
x 2 n, exp{ - iw(t - t’))  

w 
( 7 )  

where K = k0S/2Z,  Z being the mean distance of the scattering volume from the 
plane z = 0 and S being the radius of the scattering volume. The  form (7)  for the 
field autocorrelation function reduces to the form given by Mandel and Wolf (1965) 
for a circular quasi-monochromatic Gaussian source when n, = 6,,o and exhibits the 
property of “cross-spectral purity’’ : 

g(I) (r ,  t ;  r’ ,  t’) = g( l ) ( r ,  t ;  r’t)g(l)(r,  t ;  r ,  t’). (8) 
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The fluctuations seen by the detector are those of the square of the envelope of the 
field I integrated for a finite sample time T over the detector aperture A. The 
normalized temporal autocorrelation function of this quantity takes the form 

which for Gaussian light with the property (8) reduces to (Glauber 1963) 

I g‘2’(T; T ,  A )  = 1 + dt’lg(l)(r, t ;  r ,  t’) [ 
z - T/2 

The effects of spatial coherence are given by the second of the factors appearing 
on the right-hand side of (9). Using the expansion for the Bessel function, this 
double integral over the detector aperture, assumed circular with radius R,  may be 
expressed in the form 

4 

Using the relations 

2n It n 2  1 (1 -2a C O S + + U ~ ) ~  d4 = 2~ 2 ( ) a2k (12) 
0 k = O  

and 
(2s + 2)! 

( ~ + 1 ) ( ~ + 2 ) { ( ~ + 1 ) ! } ~  
- - 1 

(13) 

the integrals in (10) may be performed and the resulting expression reduced to the form 

This function is plotted against KR in figure 1. It shows how the value ofg(2)( 7; T,  A )  
decreases with the increasing fraction of a coherence area occupied by the detector 
surface, due to the averaging out of less and less correlated fluctuations. At 7 = 0 
(zero time delay) this is the reduction in the second moment of the intensity fluctua- 
tion distribution. The theory has been applied to experimental measurements of the 
second factorial moment, g(2) (0 ; T, A), of light scattered from the protein haemocyanin 
undergoing Brownian motion. This takes the form, using known results (Jakeman 
and Pike 1968) for the T dependence of g(2) in equation (9), 

g(2)(O; T ,  A)-  1 = f (A)(-  - 7 + 
Y 2Y 2Y2 

where y = rT and I’ is the halfwidth at half height of the Lorentzian spectrum. 
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Figure 1. Theoretical and experimental decrease in the excess normalized second 
factorial moment of Gaussian-Lorentzian light due to spatial coherence effects. 

Curve: theory. Dots: experiment. 

I n  making the measurement the light scattered through 90" from the protein 
undergoing Brownian motion was observed via a 0.05 mm radius circular aperture at 
the source. A second aperture on the detector was set a known distance away to 
determine KR. The unfocused laser beam (Spectra Physics 125) had a Gaussian 
profile with a radius to the l/e2 power points of 0.64". This was considerably 
larger than the first aperture and obviates 'limb darkening' effects. f (A )  was calculated 
from measurements of g(2)(O; T, A)  using equation (15) over a range of values of 
KR from 0.2 to 3.9 giving excellent agreement with the theory (figure 1). The  accuracy 
was such that as a single aperture intensity interferometer the experiment could be 
used to measure the diameter of apertures of the order to tens of microns with con- 
siderable precision. 
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